时空场共振的介绍

2024-05-15

1. 时空场共振的介绍

时空场共振是以爱因斯坦和德国物理学家海森堡的“统一场论”为基础建立的。其要旨是:借助电磁、重力、光速和时空共同演变的伸缩性,瞬间跨越恒星际空间。 到了那时,时光倒流将不再是个待解之谜。

时空场共振的介绍

2. 共振的原理


3. 共振原理

什么是共振?我们可以利用共振原理做些什么?  
  共振(resonance) 共振是指一个物理系统在其自然的振动频率(所谓的共振频率)下趋于从周围环境吸收更多能量的趋势。
 
 自然中有许多地方有共振的现象。人类也在其技术中利用或者试图避免共振现象。
 
 一些共振的例子比如有:乐器的音响共振、太阳系一些类木行星的卫星之间的轨道共振、动物耳中 基底膜的共振,电路的共振等等。一般来说一个系统(不管是力学的、声响的还是电子的)有多个共振频率,在这些频率上振动比较容易,在其它频率上振动比较困难。
 
 假如引起振动的频率比较复杂的话(比如是一个冲击或者是一个宽频振动)一个系统一般会“挑出”其共振频率随此频率振动,事实上一个系统会将其它频率过滤掉。共振是物理学上的一个运用频率非常高的专业术语。
 
  
 
 共振的定义是两个振动频率相同的物体,当一个发生振动时,引起另一个物体振动的现象。共振在声学中亦称“共鸣”,它指的是物体因共振而发声的现象,如两个频率相同的音叉靠近,其中一个振动发声时,另一个也会发声。
 
 在电学中,振荡电路的共振现象称为“谐振”。产生共振的重要条件之一,就是要有弹性,而且一件物体受外来的频率作用时,它的频率要与后者的频率相同或基本相近。
 
 从总体上来看,这宇宙的大多数物质是有弹性的,大到行星小到原子,几乎都能以一个或多个固有频率来振动。共振不仅在物理学上运用频率非常高,而且,共振现象也可以说是一种宇宙间最普遍和最频繁的自然现象之一,所以在某种程度上甚至可以这么说,是共振产生了宇宙和世间万物,没有共振就没有世界。
 
 我们都知道,宇宙是在一次剧烈的大爆炸后产生的。而促使这次大爆炸产生的根本原因之一,便是共振。
 
 当宇宙还处于浑沌的奇点时,里面就开始产生了振荡。最初的时候,这种荡振是非常微弱的。
 
 渐渐地,振荡的频率越来越高、越来越强,并引起了共振。最后,在共振和膨胀的共同作用下,导致了一阵惊天动地的轰然巨响,宇宙在瞬间急剧膨胀、扩张,然后,就产生了日月星辰,于是,在地球上便有了日月经天、江河行地,也有了植物蓬勃葳蕤、动物飞翔腾跃。
 
 共振不仅创造出了宏观的宇宙,而且,微观物质世界的产生,也与共振有着密不可分的干系。从电磁波谱看,微观世界中的原子核、电子、光子等物质运动的能量都是以波动的形式传递的。
 
 宇宙诞生初期的化学元素,也可以说是通过共振合成和产生的。有一些粒子微小到简直无法想象,但它们可以在共振的作用之下,在100万亿分之一秒的瞬间,互相结合起来,于是新的化学元素便产生了。
 
 因为宇宙中这些粒子的生成与共振有着如此密切的关系,所以粒子物理学家经常把粒子称为“共振体”。既然共振是宇宙间一切物质运动的一种普遍规律,人及其它的生物也是宇宙间的物质,当然共振也是普遍存在于这些生命中了。
 
 人除了呼吸、心跳、血液循环等都有其固有频率外,人的大脑进行思维活动时产生的脑电波也会发生共振现象。类似的共振现象在其它动物身上也同样普遍地存在着。
 
 我们喉咙间发出的每个颤动,都是因为与空气产生了共振,才形成了一个个音节,构成一句句语言,才能使我们能够用这些语言来表达我们的情感和进行社会交往。许多动物身上还存在着其它一些形式的共振现象。
 
 炎热的午间,蝉儿发出的“知了、知了”声;宁静的夜晚,蟋蟀发出的“叽—嘶”声;还有不知疲倦的大肚子蝈蝈的鸣叫声,尽管这些昆虫的声调大不相同,但其中的共同之处都是借助了共振的原理,都是靠摩擦身体的某一部位与空气产生共鸣而发声。除了昆虫之外,鸟类也是巧妙地运用着共振来演奏生命之曲的大师,它们运用共振所发出的圆润婉转的鸣叫声,是自然界生命大合唱中最为优美的声部和旋律。
 
 因此,可以这么说,如果没有共振,世界将会失去多少天籁、大地将会变得多么死寂!其实更为重要的是,共振能充当地球生物的保护神。我们知道,紫外线是太阳发出的一种射线,它们如果大举入侵地球,人类及各种生物势必遭受极大的危害,因为过量的紫外线会使生物的机能遭到严重的破坏。
 
 不过不用担心,我们有大气层中的臭氧层,是它们借助于共振的威力,阻止了紫外线的长驱直入。当紫外线经过大气层时,臭氧层的振动频率恰恰能与紫外线产生共振,因而就使这种振动吸收了大部分的紫外线。
 
 所以,共振能使大气中的臭氧层变得如防晒油一样,保证我们不至于被射线的伤害。另外,共振还能使地球维持在适当的温度,给地球生命创造出一个冷热适宜的生长环境。
 
 因为虽然经过臭氧层的堵截围追,但仍有少部分紫外线能够成功地突破层层防线,到达地球表面。这部分紫外线经过地球吸收后,能量减少,变为红外线,扩散回大气中。
 
 而红外线的热量,又恰好能和二氧化碳产生共振,然后被“挽留”在大气层中,使大气层保有一定温度,让万物在温暖和煦的环境中孕育成长。俗话说万物生长靠太阳,其实也可以这么说:万物生长靠共振。
 
 因为我们所熟知的植物的光合作用,亦是叶绿素与某些可见光共振,才能吸收阳光,产生氧气与养分。所以没有共振,植物便不能生长,人类和许多动物也就因此会失去了食物的来源。
 
 也就是说,没。
   磁共振的原理  
  固体在恒定磁场和高频交变电磁场的共同作用下,在某一频率附近产生对高频电磁场的共振吸收现象。
 
 在恒定外磁场作用下固体发生磁化,固体中的元磁矩均要绕外磁场进动。由于存在阻尼,这种进动很快衰减掉。
 
 但若在垂直于外磁场的方向上加一高频电磁场,当其频率与进动频率一致时,就会从交变电磁场中吸收能量以维持其进动,固体对入射的高频电磁场能量在上述频率处产生一个共振吸收峰。若产生磁共振的磁矩是顺磁体中的原子(或离子)磁矩,则称为顺磁共振;若磁矩是原子核的自旋磁矩,则称为核磁共振。
 
 若磁矩为铁磁体中的电子自旋磁矩,则称为铁磁共振。核磁矩比电子磁矩约小3个数量级,故核磁共振的频率和灵敏度比顺磁共振低得多;同理,弱磁物质的磁共振灵敏度又比强磁物质低。
 
 从量子力学观点看,在外磁场作用下电子和原子核的磁矩是空间量子化的,相应地具有离散能级。当外加高频电磁场的能量子hv等于能级间距时,电子或原子核就从高频电磁场吸收能量,使之从低能级跃迁到高能级,从而在共振频率处形成吸收峰。
 
 利用顺磁共振可研究分子结构及晶体中缺陷的电子结构等。核磁共振谱不仅与物质的化学元素有关,而且还受原子周围的化学环境的影响,故核磁共振已成为研究固体结构、化学键和相变过程的重要手段。
 
 核磁共振成像技术与超声和X射线成像技术一样已普遍应用于医疗检查。铁磁共振是研究铁磁体中的动态过程和测量磁性参量的重要方法。
   什么是共振?为什么会出现此类情况?原理又是什么?(希望有图解)  
  一般来说,物体在振动时,有它自己一定的频率,如敲击音叉,他只会发出同一种音调(音调由频率决定)的声音。
 
  如果给物体施加力,这个力每隔一段时间变一次方向(这种里通常有另一个正在振动的物体产生)。这个力方向改变的频率与物体的频率如果相同就可以恰好使物体在每次震动时加速,从而振幅越来越大,如果力的频率与物体的固有频率不同,则会使物体有时加速有时减速,从而不会获得较大振幅,无哦们平时所说的共振就是当频率较接近时,原先不动的物体因气体固体液体等介质传递力而发生振动。
 
  你应该注意到这样一种现象吧,就是用绳吊着一个东西,用手轻轻摆动绳,使物体的振幅越来越大,这时你手晃动的频率基本与物体一致,因此振幅越来越大,而如果手晃得过快或过慢,物体的振幅就不会那么大,这就是共振。
   共振是什么原理  
  共振是指一个物理系统在其自然的振动频率(所谓的共振频率)下趋于从周围环境吸收更多能量的趋势。自然中有许多地方有共振的现象。人类也在其技术中利用或者试图避免共振现象。一些共振的例子比如有:乐器的音响共振、太阳系一些类木行星的卫星之间的轨道共振、动物耳中 基底膜的共振,电路的共振等等。 
 
 一般来说一个系统(不管是力学的、声响的还是电子的)有多个共振频率,在这些频率上振动比较容易,在其它频率上振动比较困难。假如引起振动的频率比较复杂的话(比如是一个冲击或者是一个宽频振动)一个系统一般会“挑出”其共振频率随此频率振动,事实上一个系统会将其它频率过滤掉。
   物理共振的原理是什么?要详细点的  
  物体的固有频率相同时,产生共振 
 
 核磁共振的原理 
 
 核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的进动。 
 
 根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同: 
 
 质量数和质子数均为偶数的原子核,自旋量子数为0 
 
 质量数为奇数的原子核,自旋量子数为半整数 
 
 质量数为偶数,质子数为奇数的原子核,自旋量子数为整数 
 
 迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P 
 
 由于原子核携带电荷,当原子核自旋时,会由自旋产生一个磁矩,这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。进动具有能量也具有一定的频率。 
 
 原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在一定强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。 
 
 原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,原子核磁矩与外加磁场之间的夹角并不是连续分布的,而是由原子核的磁量子数决定的,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的能级。当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。这种能级跃迁是获取核磁共振信号的基础。 
 
 为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。根据物理学原理当外加射频场的频率与原子核自旋进动的频率相同的时候,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号.
   核磁共振技术的原理  
  核磁共振是处于静磁场中的原子核在另一交变磁场作用下发生的物理现象.通常人们所说的核磁共振指的是利用核磁共振现象获取分子结构、人体内部结构信息的技术. 并不是是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋.原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进动核和能级分裂.在交变磁场作用下,自旋核会吸收特定频率的电磁波,从较低的能级跃迁到较高能级.这种过程就是核磁共振. 核磁共振技术的历史 1930年代,物理学家伊西多·拉比发现在磁场中的原子核会沿磁场方向呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转.这是人类关于原子核与磁场以及外加射频场相互作用的最早认识.由于这项研究,拉比于1944年获得了诺贝尔物理学奖. 1946年两位美国科学家布洛赫和珀塞尔发现,将具有奇数个核子(包括质子和中子)的原子核置于磁场中,再施加以特定频率的射频场,就会发生原子核吸收射频场能量的现象,这就是人们最初对核磁共振现象的认识.为此他们两人获得了1950年度诺贝尔物理学奖. 人们在发现核磁共振现象之后很快就产生了实际用途,化学家利用分子结构对氢原子周围磁场产生的影响,发展出了核磁共振谱,用于解析分子结构,随着时间的推移,核磁共振谱技术不断发展,从最初的一维氢谱发展到13C谱、二维核磁共振谱等高级谱图,核磁共振技术解析分子结构的能力也越来越强,进入1990年代以后,人们甚至发展出了依靠核磁共振信息确定蛋白质分子三级结构的技术,使得溶液相蛋白质分子结构的精确测定成为可能. 另一方面,医学家们发现水分子中的氢原子可以产生核磁共振现象,利用这一现象可以获取人体内水分子分布的信息,从而精确绘制人体内部结构,在这一理论基础上1969年,纽约州立大学南部医学中心的医学博士达马迪安通过测核磁共振的弛豫时间成功的将小鼠的癌细胞与正常组织细胞区分开来,在达马迪安新技术的启发下纽约州立大学石溪分校的物理学家保罗·劳特伯尔于1973年开发出了基于核磁共振现象的成像技术(MRI),并且应用他的设备成功地绘制出了一个活体蛤蜊地内部结构图像.劳特伯尔之后,MRI技术日趋成熟,应用范围日益广泛,成为一项常规的医学检测手段,广泛应用于帕金森氏症、多发性硬化症等脑部与脊椎病变以及癌症的治疗和诊断.2003年,保罗·劳特伯尔和英国诺丁汉大学教授彼得·曼斯菲尔因为他们在核磁共振成像技术方面的贡献获得了当年度的诺贝尔生理学或医学奖. 核磁共振的原理 核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的进动. 根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同: 质量数和质子数均为偶数的原子核,自旋量子数为0 质量数为奇数的原子核,自旋量子数为半整数 质量数为偶数,质子数为奇数的原子核,自旋量子数为整数 迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P 由于原子核携带电荷,当原子核自旋时,会由自旋产生一个磁矩,这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比.将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动.进动具有能量也具有一定的频率. 原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在一定强度的的外加磁场中,其原子核自旋进动的频率是固定不变的. 原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,原子核磁矩与外加磁场之间的夹角并不是连续分布的,而是由原子核的磁量子数决定的,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的能级.当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化.这种能级跃迁是获取核磁共振信号的基础. 为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的.根据物理学原理当外加射频场的频率与原子核自旋进动的频率相同的时候,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力.因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号. 核磁共振的应用 NMR技术 异丙苯的1H-NMR谱图 参见核磁共振谱 NMR技术即核磁共振谱技术,是将核磁共振现象应用于分子结构测定的一项技术.对于有机分子结构测定来说,核磁共振谱扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”.目前对核磁共振谱的研究主要集中在1H和13C两类原子核的图谱. 对于孤立原子核而言,同一种原子核在同样强。

共振原理

4. 共振原理是什么?

共振原理是一个物理系统在其自然的振动频率下,从周围环境吸收更多能量的趋势。在共振频率下,很小的周期振动便可产生很大的振动,因为系统储存了动能。
共振不仅在物理学上运用频率非常高,而且,共振现象也可以说是一种宇宙间最普遍的和最频繁的自然现象之一,所以在某种程度上说,是共振产生了宇宙和世界万物,没有共振就没有世界。

扩展资料:
共振几乎在物理学的各个分支学科和许多交叉学科中以及工程技术的各个领域中都可以观察到它,都要应用到它。例如桥梁、码头等各种建筑,飞机、汽车、轮船、发动机等机器设备的设计、制造、安装中,为使建筑结构安全工作和机器能正常运转,都必须考虑到防止共振问题。
而有许多仪器和装置要利用共振原理来制造。机械共振应用的典型例子是地震仪,它不仅是地震记录和研究地震预报的基本手段,也是研究地球物理的重要工具。

5. 共振现象 的原理

固体在恒定磁场和高频交变电磁场的共同作用下,在某一频率附近产生对高频电磁场的共振吸收现象。在恒定外磁场作用下固体发生磁化,固体中的元磁矩均要绕外磁场进动。由于存在阻尼,这种进动很快衰减掉。但若在垂直于外磁场的方向上加一高频电磁场,当其频率与进动频率一致时,就会从交变电磁场中吸收能量以维持其进动,固体对入射的高频电磁场能量在上述频率处产生一个共振吸收峰。若产生磁共振的磁矩是顺磁体中的原子(或离子)磁矩,则称为顺磁共振;若磁矩是原子核的自旋磁矩,则称为核磁共振。若磁矩为铁磁体中的电子自旋磁矩,则称为铁磁共振。核磁矩比电子磁矩约小3个数量级,故核磁共振的频率和灵敏度比顺磁共振低得多;同理,弱磁物质的磁共振灵敏度又比强磁物质低。从量子力学观点看,在外磁场作用下电子和原子核的磁矩是空间量子化的,相应地具有离散能级。当外加高频电磁场的能量子hv等于能级间距时,电子或原子核就从高频电磁场吸收能量,使之从低能级跃迁到高能级,从而在共振频率处形成吸收峰。

利用顺磁共振可研究分子结构及晶体中缺陷的电子结构等。核磁共振谱不仅与物质的化学元素有关,而且还受原子周围的化学环境的影响,故核磁共振已成为研究固体结构、化学键和相变过程的重要手段。核磁共振成像技术与超声和X射线成像技术一样已普遍应用于医疗检查。铁磁共振是研究铁磁体中的动态过程和测量磁性参量的重要方法。参考资料:百度百科

共振现象 的原理

6. 什么是共振原理?


7. 时空场共振的应用环境

茫茫宇宙浩瀚无垠,我们所处的银河系呈凸透镜状,其直径约为10万光年,中心厚度约15000光年,包含有大约3000亿颗恒星,其中已经认为适宜生命居住的行星约有10亿--50亿颗。此外在宇宙中还有很多的银河系(即河外星云),每一个银河系又各自包含有几百亿到几千亿颗恒星,和几十亿颗适宜生命居住的行星,但是由于人类使用当代最先进的技术手段能够探测到的宇宙空间至今最远也仅只达到距地球大约140亿光年的范围,其中包含有约1000亿-2000亿个银河系和超过10万亿亿颗恒星。但却不知道在这140亿光年之外又是什么情况?因此现在谁也说不清在整个宇宙中总共到底有多少亿个银河系?又有多少亿颗恒星和多少亿颗适宜于生命居住的行星?在宇宙中的恒星和适宜生命居住的行星个数不仅动辄以亿计,而且它们在空间的分 布又很分散,其间的距离动辄又以光年计!比如在银河系内,据最新报导已发现在大熊座47号(距地球45光年),飞马座51号(距地球55光年)和室女座70号(距地球60光年)这三个恒星附近有适宜生命存在的行星,而在银河系外比如仙女座星云包含约有6000亿颗恒星,距地球约220万光年!

时空场共振的应用环境

8. 时空场共振的特殊要求

由上述可见,面对如此众多的星球和如此遥远的距离,即使以光速飞行,仅仅去访 问某一个适宜生命居住的行星,来回一次最少也得大约100年,多则几百万年甚至几百亿年,更不要说一次要去访问几个相距遥远的行星了,这显然是当代最先进的载人宇宙飞船也是绝对无法胜任的,因此要想实现星际飞行,至少必须满足以下一些特殊要求:(1)、在飞行途中没有“加油站”,也很难想象自带燃料而能满足如此长距离长 时间飞行的要求,因此至少必需解决在整个飞行过程中不断接受广泛来自宇宙的外界能 源并使之转化为飞船飞行的动力。当然如果能在飞行途中不需接受任何外界能源,即能 完成全程飞行,那是最好。(2)、如果使用核动力或热核动力系统,因为在其运行时产生巨大的核辐射,为 了保护乘员的生命安全和电子系统不被破坏,就必须采用笨重的辐射防护屏,这既减少了有效载荷,又增加了飞船本身的重量,其次也难以保证在紧急着陆时反应堆不会产生核爆炸,另外在飞行途中当燃料用完时也没有现成的核燃料可供置换,更无法处理核废料,以免造成环境污染,因此使用核能源需特别慎重。(3)、宇宙间没有“修理站”,一旦动力系统的机件出现故障,将难以处置,因 此系统本身的可靠性必需有绝对的保证,这就要求在系统工作的过程中,机械运转的部件 越少,则出现故障的概率越小,可靠性越高。(4)、在星际飞行中,长期处于失重状态将导致飞船乘员的诸多太空病,如晕动症、肌肉萎缩、平衡失调、骨质疏松引起骨折、以及心理上的孤寂,空间高能粒子(如宇宙射线)辐射对乘员、元器件和材料等造成的损伤,还要解决乘员长时间的生活供 应问题(如饮食、排泄、供氧、供水),因此对生命保障系统的高效,安全和可靠 性要求是头等大事,这就在客观上要求动力系统具有高速高效的功能,以缩短飞行时间。(5)、如果我们要飞往半人马座α星(通过哈勃太空望远镜拍摄的 图像确定它是一个巨大星系,距地球1000万光年),不可想象能用亚光速飞行完成一 个来回,因此必需采用超光速飞行,这就带来一大堆问题如:A、采取什么措施才能使 飞船达到超光速?B、飞船速度怎么突破“光障”进入超光速飞行?又怎么由超光速转 入亚光速飞行?C、飞船在亚光速飞行时,按照狭义相对论,其速度越快,则时间过得越慢,而在超光速飞行时情况又如何?D、在超光速飞行时是否也还有速度快慢的差别 ?一旦控制电脑出现故障,如何由人脑来控制速度?E、在超光速飞行阶段和突破“光障”的瞬间对飞船的结构强度和乘员的生命安全有何影响?F、为了完成如此遥远的星际飞行,是否能找到非常规的飞行原理和先进的飞行方式?等等。时空场共振飞船的设计是基于使用自由电子雷射来产生很强的磁场,目前地球上研究成功的超导磁铁和其他型式的磁铁,应该是发展测试时空/场共振理论的物质。由此可见,要想实现星际飞行,一方面需要解决的新问题远远的不止上述这些,另 一方面当前的航空航天科技水平又绝对不可能实现上述要求,这就顺理成章地在研制飞船的动力系统方面使我们面对三个新问题有待解决:〈1〉探索新的飞行原理〈2〉开发新的能源和动力装置〈3〉研制新型发动机下面有关当代对动力系统的研究,实质上都是属于上述这三个问题的范畴。

最新文章
热门文章
推荐阅读