除了爱因斯坦,还有几位科学家也影响了世界?

2024-05-16

1. 除了爱因斯坦,还有几位科学家也影响了世界?

在这个缤纷多彩的世界里,我们有着对美好事物的向往,因此我们喜欢的东西也就各不相同,有人喜欢银幕上的明星,因为他们能够给我们带来最直接的快乐。但是,也有人喜欢那些默默无闻的科学家们,他们虽然不能带给我们快乐,但他们却默默地改变着这个世界,我们也因他们的改变,有了如今这种十分优质的生活。

正如我们现在所经历的,我们发现现在的生活逐渐开始变得越来越方便,而这些方便使得我们做事情不再像从前那样复杂,而这些正是这些伟大的科学家们赋予的。当然,世界上有名气的科学家,也是十分多的,他们对于科学的坚持不懈,致力于探索未知的精神,一直被我们所赞颂。就如爱因斯坦,在我们的印象中,他就特别的厉害。不过他并不是第一名。

不过爱因斯坦也不是对世界影响最深的前五名科学家中的最后一名,排在他之前的第五名,也是我们耳熟能详的霍金。我们都知道他患有肌肉萎缩症,但这并没有阻止他对宇宙的探索,相反还使得他的决心更加的坚定。因此他对物理学和宇宙学就有了很深的造诣,他用通俗的语言向我们表达了,他对于这个宇宙的看法。

并在前人爱因斯坦的基础上证明了爱因斯坦的思想,证明了广义相对论是存在的。而他虽然患有肌肉萎缩症,却在科学界取得了许许多多的成就,人们在为之惊讶的同时,也被他的这种身残志坚的精神所感动,而他的《时间简史》更是让他成为了最了解黑洞的人,许多关于黑洞的影视作品都需要参考霍金的文献,或者去咨询霍金本人。

当然,著名的科学家并不止霍金本人,我们之前说到的爱因斯坦,也是家家户户都知晓的人物。而他在科学界也是相当出名的,尤其是物理这一领域,更是大牛一般的存在。有科学家曾说,爱因斯坦的大脑开发程度接近20%左右,这个高度,是迄今无人能达到的高度。他又被世人称为人类史上第一人。我们之前提及的广义相对论就是他提出来的。

在他的一生中,他不仅提出了广义相对论,还提出了能量之间是守恒的,这些都被我们证明了。而他由于时间不足,只能提出三个猜想,分别是引力波、虫洞、黑洞,让后世去探索,其中引力波和黑洞,我们现在已经证明它们是存在的,只剩下虫洞这一猜想目前还没有证明出来。这不得不说爱因斯坦不仅是一个伟大的科学家,也是一个伟大的预言家。

而在爱因斯坦之上,并被爱因斯坦评论的这位,如果他的手稿能够公布于世,那么世界的发展将会向前推进半个世纪,如此高的评价,说是科学界对人类影响最大的第一人也不为过。他就是达芬奇,被世人认为不属于那个时代的天才。

他在科学界个个方面,都有着建树,当然目前我们所知道的还是他的绘画。如《蒙娜丽莎》、《最后的晚餐》都是出自于达芬奇之手。但是如果我们去详细地了解他,我们就会发现他还是一个发明家,一个解刨学的开创者。

除了爱因斯坦,还有几位科学家也影响了世界?

2. 爱因斯坦是怎么研究外太空的? 那个时代连宇宙飞船都没有,他是怎么发现相对论的?

早在16岁时,爱因斯坦就从书本上了解到光是以很快速度前进的电磁波,他产生了一个想法,如果一个人以光的速度运动,他将看到一幅什么样的世界景象呢?他将看不到前进的光,只能看到在空间里振荡着却停滞不前的电磁场.这种事可能发生吗?
  与此相联系,他非常想探讨与光波有关的所谓以太的问题.以太这个名词源于希腊,用以代表组成天上物体的基本元素.17世纪,笛卡尔首次将它引入科学,作为传播光的媒质.其后,惠更斯进一步发展了以太学说,认为荷载光波的媒介物是以太,它应该充满包括真空在内的全部空间,并能渗透到通常的物质中.与惠更斯的看法不同,牛顿提出了光的微粒说.牛顿认为,发光体发射出的是以直线运动的微粒粒子流,粒子流冲击视网膜就引起视觉.18世纪牛顿的微粒说占了上风,然而到了19世纪,却是波动说占了绝对优势,以太的学说也因此大大发展.当时的看法是,波的传播要依赖于媒质,因为光可以在真空中传播,传播光波的媒质是充满整个空间的以太,也叫光以太.与此同时,电磁学得到了蓬勃发展,经过麦克斯韦、赫兹等人的努力,形成了成熟的电磁现象的动力学理论——电动力学,并从理论与实践上将光和电磁现象统一起来,认为光就是一定频率范围内的电磁波,从而将光的波动理论与电磁理论统一起来.以太不仅是光波的载体,也成了电磁场的载体.直到19世纪末,人们企图寻找以太,然而从未在实验中发现以太.
  但是,电动力学遇到了一个重大的问题,就是与牛顿力学所遵从的相对性原理不一致.关于相对性原理的思想,早在伽利略和牛顿时期就已经有了.电磁学的发展最初也是纳入牛顿力学的框架,但在解释运动物体的电磁过程时却遇到了困难.按照麦克斯韦理论,真空中电磁波的速度,也就是光的速度是一个恒量,然而按照牛顿力学的速度加法原理,不同惯性系的光速不同,这就出现了一个问题:适用于力学的相对性原理是否适用于电磁学?例如,有两辆汽车,一辆向你驶近,一辆驶离.你看到前一辆车的灯光向你靠近,后一辆车的灯光远离.按照麦克斯韦的理论,这两种光的速度相同,汽车的速度在其中不起作用.但根据伽利略理论,这两项的测量结果不同.向你驶来的车将发出的光加速,即前车的光速=光速+车速;而驶离车的光速较慢,因为后车的光速=光速-车速.麦克斯韦与伽利略关于速度的说法明显相悖.我们如何解决这一分歧呢?
  19世纪理论物理学达到了巅峰状态,但其中也隐含着巨大的危机.海王星的发现显示出牛顿力学无比强大的理论威力,电磁学与力学的统一使物理学显示出一种形式上的完整,并被誉为“一座庄严雄伟的建筑体系和动人心弦的美丽的庙堂”.在人们的心目中,古典物理学已经达到了近乎完美的程度.德国著名的物理学家普朗克年轻时曾向他的老师表示要献身于理论物理学,老师劝他说:“年轻人,物理学是一门已经完成了的科学,不会再有多大的发展了,将一生献给这门学科,太可惜了.”
  爱因斯坦似乎就是那个将构建崭新的物理学大厦的人.在伯尔尼专利局的日子里,爱因斯坦广泛关注物理学界的前沿动态,在许多问题上深入思考,并形成了自己独特的见解.在十年的探索过程中,爱因斯坦认真研究了麦克斯韦电磁理论,特别是经过赫兹和洛伦兹发展和阐述的电动力学.爱因斯坦坚信电磁理论是完全正确的,但是有一个问题使他不安,这就是绝对参照系以太的存在.他阅读了许多著作发现,所有人试图证明以太存在的试验都是失败的.经过研究爱因斯坦发现,除了作为绝对参照系和电磁场的荷载物外,以太在洛伦兹理论中已经没有实际意义.于是他想到:以及绝对参照系是必要的吗?电磁场一定要有荷载物吗?
  爱因斯坦喜欢阅读哲学著作,并从哲学中吸收思想营养,他相信世界的统一性和逻辑的一致性.相对性原理已经在力学中被广泛证明,但在电动力学中却无法成立,对于物理学这两个理论体系在逻辑上的不一致,爱因斯坦提出了怀疑.他认为,相对论原理应该普遍成立,因此电磁理论对于各个惯性系应该具有同样的形式,但在这里出现了光速的问题.光速是不变的量还是可变的量,成为相对性原理是否普遍成立的首要问题.当时的物理学家一般都相信以太,也就是相信存在着绝对参照系,这是受到牛顿的绝对空间概念的影响.19世纪末,马赫在所著的《发展中的力学》中,批判了牛顿的绝对时空观,这给爱因斯坦留下了深刻的印象.1905年5月的一天,爱因斯坦与一个朋友贝索讨论这个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨论了很久.突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白了问题.第二天,他又来到贝索家,说:谢谢你,我的问题解决了.原来爱因斯坦想清楚了一件事:时间没有绝对的定义,时间与光信号的速度有一种不可分割的联系.他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在人们面前.
  1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9月的该刊上发表.这篇论文是关于狭义相对论的第一篇文章,它包含了狭义相对论的基本思想和基本内容.狭义相对论所根据的是两条原理:相对性原理和光速不变原理.爱因斯坦解决问题的出发点,是他坚信相对性原理.伽利略最早阐明过相对性原理的思想,但他没有对时间和空间给出过明确的定义.牛顿建立力学体系时也讲了相对性思想,但又定义了绝对空间、绝对时间和绝对运动,在这个问题上他是矛盾的.而爱因斯坦大大发展了相对性原理,在他看来,根本不存在绝对静止的空间,同样不存在绝对同一的时间,所有时间和空间都是和运动的物体联系在一起的.对于任何一个参照系和坐标系,都只有属于这个参照系和坐标系的空间和时间.对于一切惯性系,运用该参照系的空间和时间所表达的物理规律,它们的形式都是相同的,这就是相对性原理,严格地说是狭义的相对性原理.在这篇文章中,爱因斯坦没有多讨论将光速不变作为基本原理的根据,他提出光速不变是一个大胆的假设,是从电磁理论和相对性原理的要求而提出来的.这篇文章是爱因斯坦多年来思考以太与电动力学问题的结果,他从同时的相对性这一点作为突破口,建立了全新的时间和空间理论,并在新的时空理论基础上给动体的电动力学以完整的形式,以太不再是必要的,以太漂流是不存在的.
  什么是同时性的相对性?不同地方的两个事件我们何以知道它是同时发生的呢?一般来说,我们会通过信号来确认.为了得知异地事件的同时性我们就得知道信号的传递速度,但如何没出这一速度呢?我们必须测出两地的空间距离以及信号传递所需的时间,空间距离的测量很简单,麻烦在于测量时间,我们必须假定两地各有一只已经对好了的钟,从两个钟的读数可以知道信号传播的时间.但我们如何知道异地的钟对好了呢?答案是还需要一种信号.这个信号能否将钟对好?如果按照先前的思路,它又需要一种新信号,这样无穷后退,异地的同时性实际上无法确认.不过有一点是明确的,同时性必与一种信号相联系,否则我们说这两件事同时发生是没有意义的.
  光信号可能是用来对时钟最合适的信号,但光速不是无限大,这样就产生一个新奇的结论,对于静止的观察者同时的两件事,对于运动的观察者就不是同时的.我们设想一个高速运行的列车,它的速度接近光速.列车通过站台时,甲站在站台上,有两道闪电在甲眼前闪过,一道在火车前端,一道在后端,并在火车两端及平台的相应部位留下痕迹,通过测量,甲与列车两端的间距相等,得出的结论是,甲是同时看到两道闪电的.因此对甲来说,收到的两个光信号在同一时间间隔内传播同样的距离,并同时到达他所在位置,这两起事件必然在同一时间发生,它们是同时的.但对于在列车内部正中央的乙,情况则不同,因为乙与高速运行的列车一同运动,因此他会先截取向着他传播的前端信号,然后收到从后端传来的光信号.对乙来说,这两起事件是不同时的.也就是说,同时性不是绝对的,而取决于观察者的运动状态.这一结论否定了牛顿力学中引以为基础的绝对时间和绝对空间框架.
  相对论认为,光速在所有惯性参考系中不变,它是物体运动的最大速度.由于相对论效应,运动物体的长度会变短,运动物体的时间膨胀.但由于日常生活中所遇到的问题,运动速度都是很低的(与光速相比),看不出相对论效应.
  爱因斯坦在时空观的彻底变革的基础上建立了相对论力学,指出质量随着速度的增加而增加,当速度接近光速时,质量趋于无穷大.他并且给出了著名的质能关系式:E=mc2,质能关系式对后来发展的原子能事业起到了指导作用.
  广义相对论的建立
  1905年,爱因斯坦发表了关于狭义相对论的第一篇文章后,并没有立即引起很大的反响.但是德国物理学的权威人士普朗克注意到了他的文章,认为爱因斯坦的工作可以与哥白尼相媲美,正是由于普朗克的推动,相对论很快成为人们研究和讨论的课题,爱因斯坦也受到了学术界的注意.
  1907年,爱因斯坦听从友人的建议,提交了那篇著名的论文申请联邦工业大学的编外讲师职位,但得到的答复是论文无法理解.虽然在德国物理学界爱因斯坦已经很有名气,但在瑞士,他却得不到一个大学的教职,许多有名望的人开始为他鸣不平,1908年,爱因斯坦终于得到了编外讲师的职位,并在第二年当上了副教授.1912年,爱因斯坦当上了教授,1913年,应普朗克之邀担任新成立的威廉皇帝物理研究所所长和柏林大学教授.
  在此期间,爱因斯坦在考虑将已经建立的相对论推广,对于他来说,有两个问题使他不安.第一个是引力问题,狭义相对论对于力学、热力学和电动力学的物理规律是正确的,但是它不能解释引力问题.牛顿的引力理论是超距的,两个物体之间的引力作用在瞬间传递,即以无穷大的速度传递,这与相对论依据的场的观点和极限的光速冲突.第二个是非惯性系问题,狭义相对论与以前的物理学规律一样,都只适用于惯性系.但事实上却很难找到真正的惯性系.从逻辑上说,一切自然规律不应该局限于惯性系,必须考虑非惯性系.狭义相对论很难解释所谓的双生了佯谬,该佯谬说的是,有一对孪生兄弟,哥在宇宙飞船上以接近光速的速度做宇宙航行,根据相对论效应,高速运动的时钟变慢,等哥哥回来,弟弟已经变得很老了,因为地球上已经经历了几十年.而按照相对性原理,飞船相对于地球高速运动,地球相对于飞船也高速运动,弟弟看哥哥变年轻了,哥哥看弟弟也应该年轻了.这个问题简直没法回答.实际上,狭义相对论只处理匀速直线运动,而哥哥要回来必须经过一个变速运动过程,这是相对论无法处理的.正在人们忙于理解相对狭义相对论时,爱因斯坦正在接受完成广义相对论.
  1907年,爱因斯坦撰写了关于狭义相对论的长篇文章《关于相对性原理和由此得出的结论》,在这篇文章中爱因斯坦第一次提到了等效原理,此后,爱因斯坦关于等效原理的思想又不断发展.他以惯性质量和引力质量成正比的自然规律作为等效原理的根据,提出在无限小的体积中均匀的引力场完全可以代替加速运动的参照系.爱因斯坦并且提出了封闭箱的说法:在一封闭箱中的观察者,不管用什么方法也无法确定他究竟是静止于一个引力场中,还是处在没有引力场却在作加速运动的空间中,这是解释等效原理最常用的说法,而惯性质量与引力质量相等是等效原理一个自然的推论.
  1915年11月,爱因斯坦先后向普鲁士科学院提交了四篇论文,在这四篇论文中,他提出了新的看法,证明了水星近日点的进动,并给出了正确的引力场方程.至此,广义相对论的基本问题都解决了,广义相对论诞生了.1916年,爱因斯坦完成了长篇论文《广义相对论的基础》,在这篇文章中,爱因斯坦首先将以前适用于惯性系的相对论称为狭义相对论,将只对于惯性系物理规律同样成立的原理称为狭义相对性原理,并进一步表述了广义相对性原理:物理学的定律必须对于无论哪种方式运动着的参照系都成立.
  爱因斯坦的广义相对论认为,由于有物质的存在,空间和时间会发生弯曲,而引力场实际上是一个弯曲的时空.爱因斯坦用太阳引力使空间弯曲的理论,很好地解释了水星近日点进动中一直无法解释的43秒.广义相对论的第二大预言是引力红移,即在强引力场中光谱向红端移动,20年代,天文学家在天文观测中证实了这一点.广义相对论的第三大预言是引力场使光线偏转,.最靠近地球的大引力场是太阳引力场,爱因斯坦预言,遥远的星光如果掠过太阳表面将会发生一点七秒的偏转.1919年,在英国天文学家爱丁顿的鼓动下,英国派出了两支远征队分赴两地观察日全食,经过认真的研究得出最后的结论是:星光在太阳附近的确发生了一点七秒的偏转.英国皇家学会和皇家天文学会正式宣读了观测报告,确认广义相对论的结论是正确的.会上,著名物理学家、皇家学会会长汤姆孙说:“这是自从牛顿时代以来所取得的关于万有引力理论的最重大的成果”,“爱因斯坦的相对论是人类思想最伟大的成果之一”.爱因斯坦成了新闻人物,他在1916年写了一本通俗介绍相对认的书《狭义相对论与广义相对论浅说》,到1922年已经再版了40次,还被译成了十几种文字,广为流传.
  相对论的意义
  狭义相对论和广义相对论建立以来,已经过去了很长时间,它经受住了实践和历史的考验,是人们普遍承认的真理.相对论对于现代物理学的发展和现代人类思相的发展都有巨大的影响.  相对论从逻辑思想上统一了经典物理学,使经典物理学成为一个完美的科学体系.狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,都是对洛伦兹变换协变的,牛顿力学只不过是物体在低速运动下很好的近似规律.广义相对论又在广义协变的基础上,通过等效原理,建立了局域惯性长与普遍参照系数之间的关系,得到了所有物理规律的广义协变形式,并建立了广义协变的引力理论,而牛顿引力理论只是它的一级近似.这就从根本上解决了以前物理学只限于惯性系数的问题,从逻辑上得到了合理的安排.相对论严格地考察了时间、空间、物质和运动这些物理学的基本概念,给出了科学而系统的时空观和物质观,从而使物理学在逻辑上成为完美的科学体系.
  狭义相对论给出了物体在高速运动下的运动规律,并提示了质量与能量相当,给出了质能关系式.这两项成果对低速运动的宏观物体并不明显,但在研究微观粒子时却显示了极端的重要性.因为微观粒子的运动速度一般都比较快,有的接近甚至达到光速,所以粒子的物理学离不开相对论.质能关系式不仅为量子理论的建立和发展创造了必要的条件,而且为原子核物理学的发展和应用提供了根据.
  广义相对论建立了完善的引力理论,而引力理论主要涉及的是天体.到现在,相对论宇宙学进一步发展,而引力波物理、致密天体物理和黑洞物理这些属于相对论天体物理学的分支学科都有一定的进展,吸引了许多科学家进行研究.
  一位法国物理学家曾经这样评价爱因斯坦:“在我们这一时代的物理学家中,爱因斯坦将位于最前列.他现在是、将来也还是人类宇宙中最有光辉的巨星之一”,“按照我的看法,他也许比牛顿更伟大,因为他对于科学的贡献,更加深入地进入了人类思想基本要领的结构中.”

3. 爱因斯坦创立的相对论被证实了吗?

时间晶体曾经只存在于爱因斯坦的相对论中,如今被证实真实存在

爱因斯坦创立的相对论被证实了吗?

4. 如果没有爱因斯坦,相对论到现在会被发现吗?

这个还真的说不定,人类进程岁月这么长,可能会有科学家发现相对论,但是发现的时间就是最大的问题。因为科学理论成果就是一个阶梯式的形式发展的,都是需要站在很多前辈的理论上在进行自己的理论,也就是站在巨人的肩膀上看世界,最后理论果实成熟,在进行最后一步的发表。很多的科学理论都是需要最后有一个人来完成它的揭示,它整体的理论内容是大体已成立了的,就算没有这个人来发现揭示,也会有下一位科学家对这个呼之欲出的理论进行解释和分析。
但是这样的道理或许其他科学理论可以,但是关于爱因斯坦的相对论就不一样了。因为关于相对论,其实在爱因斯坦研究之前,就有一名名叫洛伦兹的科学家发布过相对论的公式,但是由于没有打破自己的思维方式,于是就与相对论研究失之交臂,爱因斯坦通过这方面的领域研究,在1905年提出了狭义相对论,在经过10年的打磨之后,才提出了广义相对论,直接打破了牛顿的绝对时空观,并提出了新的理论时空扭曲。
因此可以这么说,如果没有爱因斯坦的话,狭义相对论有可能会被研究同领域的其他人发现,但是,广义相对论就极有可能因为爱因斯坦的不存在,而不会被人发现,甚至是公布于世界。
因为当时在1916年爱因斯坦发布了这个广义相对论之后,它作为相对论新的理论,并没有得到许多科学家的认同,是经过后来许多的科学证明才证实了爱因斯坦广义相对论的地位。

5. 爱因斯坦相对论,时空虫洞,他很聪明!但是他凭什么想出来的这样空间理论?爱因斯坦活的时代根本对天文一

爱因斯坦的时代怎么会“根本对天文一无所有”?

首先,迈克尔逊-莫雷实验测定宇宙中的光速,对当时的经典物理学形成了根本性的挑战;
其次,经典物理学本身就是从天文观测一步步发展来的——第谷·布拉赫积累了大量的天文观测数据,开普勒在其基础上天才地假设行星绕日运动的椭圆轨道,从而发现了行星运动三定律,牛顿则用微积分将其归纳为万有引力定律;
最后,根据经典力学可以预言行星进动,还可以从观测到的行星进动与理论计算的差别当中预言未被观测到的行星存在,然而水星的进动难以解释。

爱因斯坦首先对拟合迈克尔逊-莫雷实验测定光速的菲茨杰惹-洛伦兹公式进行了全新的解释,以光速不变和等效参照系的公设推出来狭义相对论,后来则推广了他的等效原理,将引力场和加速系等效,从而用黎曼几何工具推出了广义相对论,预言了光线弯曲,并且在爱丁顿组织的日食观测当中获得了惊人的胜利。这一切,怎么脱离得了当时的天文观测实践?

至于说后来的“宇宙大爆炸”、“时空虫洞”等假说,那更是和射电望远镜的发展、宇宙背景辐射的发现以及量子力学的发展和各大前沿理论的综合运用分不开的。

爱因斯坦相对论,时空虫洞,他很聪明!但是他凭什么想出来的这样空间理论?爱因斯坦活的时代根本对天文一

6. 闲着无聊,来谈论一下爱因斯坦的时空可跨越论,我否认这种观点

穿越时空相对论

  这个问题目前科学界还没有定论。史蒂芬·霍金写的《时间简史》里对此做过专门的讨论,建议去仔细看看这本书,顺带学一学相对论和量子论,这样更有利于理解。霍金认为即使真的超过光速,也不可能真正穿越时空,时间倒流只是一个假象,超光速事件将引起时间和空间一系列量子力学上的反应,最终使得穿越时空无法实现。当然,也有的科学家对此持不同意见,而且穿越时空的办法并不止超光速一种。至于历史的轨迹问题也在《时间简史》中有过详细的论述,同样有好几种不同说法,不过总的来说,历史是以随机性即不确定性为主的,并非一切都固定无误。
爱因斯坦的相对论与穿越时空
  相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念
狭义相对论
  马赫和休谟的哲学对爱因斯坦影响很大。马赫认为时间和空间的量度与物质运动有关。时空的观念是通过经验形成的。绝对时空无论依据什么经验也不能把握。休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。而时间总是又能够变化的对象的可觉察的变化而发现的。1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。而牛顿的绝对时空观念是错误的。不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。他用光速不变和相对性原理提出了洛仑兹变换。创立了狭义相对论。
  狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。
  四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。
  四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。
  相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。
  狭义相对论基本原理
  物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。
  伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。
  著名的麦克尔逊-莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理,光速不变原理。
  由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是0。99倍光速,人的速度也是0。99倍光速,那么地面观测者的结论不是1。98倍光速,而是0。999949倍光速。车上的人看到后面的射来的光也没有变慢,对他来说也是光速。因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。
  狭义相对论效应
  根据狭义相对性原理,惯性系是完全等价的,因此,在同一个惯性系中,存在统一的时间,称为同时性,而相对论证明,在不同的惯性系中,却没有统一的同时性,也就是两个事件(时空点)在一个关性系内同时,在另一个惯性系内就可能不同时,这就是同时的相对性,在惯性系中,同一物理过程的时间进程是完全相同的,如果用同一物理过程来度量时间,就可在整个惯性系中得到统一的时间。在今后的广义相对论中可以知道,非惯性系中,时空是不均匀的,也就是说,在同一非惯性系中,没有统一的时间,因此不能建立统一的同时性。
  相对论导出了不同惯性系之间时间进度的关系,发现运动的惯性系时间进度慢,这就是所谓的钟慢效应。可以通俗的理解为,运动的钟比静止的钟走得慢,而且,运动速度越快,钟走的越慢,接近光速时,钟就几乎停止了。
  尺子的长度就是在一惯性系中"同时"得到的两个端点的坐标值的差。由于"同时"的相对性,不同惯性系中测量的长度也不同。相对论证明,在尺子长度方向上运动的尺子比静止的尺子短,这就是所谓的尺缩效应,当速度接近光速时,尺子缩成一个点。
  由以上陈述可知,钟慢和尺缩的原理就是时间进度有相对性。也就是说,时间进度与参考系有关。这就从根本上否定了牛顿的绝对时空观,相对论认为,绝对时间是不存在的,然而时间仍是个客观量。比如在下期将讨论的双生子理想实验中,哥哥乘飞船回来后是15岁,弟弟可能已经是45岁了,说明时间是相对的,但哥哥的确是活了15年,弟弟也的确认为自己活了45年,这是与参考系无关的,时间又是"绝对的"。这说明,不论物体运动状态如何,它本身所经历的时间是一个客观量,是绝对的,这称为固有时。也就是说,无论你以什么形式运动,你都认为你喝咖啡的速度很正常,你的生活规律都没有被打乱,但别人可能看到你喝咖啡用了100年,而从放下杯子到寿终正寝只用了一秒钟。
  时钟佯谬或双生子佯谬
  相对论诞生后,曾经有一个令人极感兴趣的疑难问题---双生子佯谬。一对双生子A和B,A在地球上,B乘火箭去做星际旅行,经过漫长岁月返回地球。爱因斯坦由相对论断言,二人经历的时间不同,重逢时B将比A年轻。许多人有疑问,认为A看B在运动,B看A也在运动,为什么不能是A比B年轻呢?由于地球可近似为惯性系,B要经历加速与减速过程,是变加速运动参考系,真正讨论起来非常复杂,因此这个爱因斯坦早已讨论清楚的问题被许多人误认为相对论是自相矛盾的理论。如果用时空图和世界线的概念讨论此问题就简便多了,只是要用到许多数学知识和公式。在此只是用语言来描述一种最简单的情形。不过只用语言无法更详细说明细节,有兴趣的请参考一些相对论书籍。我们的结论是,无论在那个参考系中,B都比A年轻。
  为使问题简化,只讨论这种情形,火箭经过极短时间加速到亚光速,飞行一段时间后,用极短时间掉头,又飞行一段时间,用极短时间减速与地球相遇。这样处理的目的是略去加速和减速造成的影响。在地球参考系中很好讨论,火箭始终是动钟,重逢时B比A年轻。在火箭参考系内,地球在匀速过程中是动钟,时间进程比火箭内慢,但最关键的地方是火箭掉头的过程。在掉头过程中,地球由火箭后方很远的地方经过极短的时间划过半个圆周,到达火箭的前方很远的地方。这是一个"超光速"过程。只是这种超光速与相对论并不矛盾,这种"超光速"并不能传递任何信息,不是真正意义上的超光速。如果没有这个掉头过程,火箭与地球就不能相遇,由于不同的参考系没有统一的时间,因此无法比较他们的年龄,只有在他们相遇时才可以比较。火箭掉头后,B不能直接接受A的信息,因为信息传递需要时间。B看到的实际过程是在掉头过程中,地球的时间进度猛地加快了。在B看来,A现实比B年轻,接着在掉头时迅速衰老,返航时,A又比自己衰老的慢了。重逢时,自己仍比A年轻。也就是说,相对论不存在逻辑上的矛盾。
广义相对论
  相对论问世,人们看到的结论就是:四维弯曲时空,有限无边宇宙,引力波,引力透镜,大爆炸宇宙学说,以及二十一世纪的主旋律--黑洞等等。这一切来的都太突然,让人们觉得相对论神秘莫测,因此在相对论问世头几年,一些人扬言"全世界只有十二个人懂相对论"。甚至有人说"全世界只有两个半人懂相对论"。更有甚者将相对论与"通灵术","招魂术"之类相提并论。其实相对论并不神秘,它是最脚踏实地的理论,是经历了千百次实践检验的真理,更不是高不可攀的。
  相对论应用的几何学并不是普通的欧几里得几何,而是黎曼几何。相信很多人都知道非欧几何,它分为罗氏几何与黎氏几何两种。黎曼从更高的角度统一了三种几何,称为黎曼几何。在非欧几何里,有很多奇怪的结论。三角形内角和不是180度,圆周率也不是3。14等等。因此在刚出台时,倍受嘲讽,被认为是最无用的理论。直到在球面几何中发现了它的应用才受到重视。
  空间如果不存在物质,时空是平直的,用欧氏几何就足够了。比如在狭义相对论中应用的,就是四维伪欧几里得空间。加一个伪字是因为时间坐标前面还有个虚数单位i。当空间存在物质时,物质与时空相互作用,使时空发生了弯曲,这是就要用非欧几何。
  相对论预言了引力波的存在,发现了引力场与引力波都是以光速传播的,否定了万有引力定律的超距作用。当光线由恒星发出,遇到大质量天体,光线会重新汇聚,也就是说,我们可以观测到被天体挡住的恒星。一般情况下,看到的是个环,被称为爱因斯坦环。爱因斯坦将场方程应用到宇宙时,发现宇宙不是稳定的,它要么膨胀要么收缩。当时宇宙学认为,宇宙是无限的,静止的,恒星也是无限的。于是他不惜修改场方程,加入了一个宇宙项,得到一个稳定解,提出有限无边宇宙模型。不久哈勃发现著名的哈勃定律,提出了宇宙膨胀学说。爱因斯坦为此后悔不已,放弃了宇宙项,称这是他一生最大的错误。在以后的研究中,物理学家们惊奇的发现,宇宙何止是在膨胀,简直是在爆炸。极早期的宇宙分布在极小的尺度内,宇宙学家们需要研究粒子物理的内容来提出更全面的宇宙演化模型,而粒子物理学家需要宇宙学家们的观测结果和理论来丰富和发展粒子物理。这样,物理学中研究最大和最小的两个目前最活跃的分支:粒子物理学和宇宙学竟这样相互结合起来。就像高中物理序言中说的那样,如同一头怪蟒咬住了自己的尾巴。值得一提的是,虽然爱因斯坦的静态宇宙被抛弃了,但它的有限无边宇宙模型却是宇宙未来三种可能的命运之一,而且是最有希望的。近年来宇宙项又被重新重视起来了。黑洞问题将在今后的文章中讨论。黑洞与大爆炸虽然是相对论的预言,它们的内容却已经超出了相对论的限制,与量子力学,热力学结合的相当紧密。今后的理论有希望在这里找到突破口。
  广义相对论基本原理
  由于惯性系无法定义,爱因斯坦将相对性原理推广到非惯性系,提出了广义相对论的第一个原理:广义相对性原理。其内容是,所有参考系在描述自然定律时都是等效的。这与狭义相对性原理有很大区别。在不同参考系中,一切物理定律完全等价,没有任何描述上的区别。但在一切参考系中,这是不可能的,只能说不同参考系可以同样有效的描述自然律。这就需要我们寻找一种更好的描述方法来适应这种要求。通过狭义相对论,很容易证明旋转圆盘的圆周率大于
  。因此,普通参考系应该用黎曼几何来描述。第二个原理是光速不变原理:光速在任意参考系内都是不变的。它等效于在四维时空中光的时空点是不动的。当时空是平直的,在三维空间中光以光速直线运动,当时空弯曲时,在三维空间中光沿着弯曲的空间运动。可以说引力可使光线偏折,但不可加速光子。第三个原理是最著名的等效原理。质量有两种,惯性质量是用来度量物体惯性大小的,起初由牛顿第二定律定义。引力质量度量物体引力荷的大小,起初由牛顿的万有引力定律定义。它们是互不相干的两个定律。惯性质量不等于电荷,甚至目前为止没有任何关系。那么惯性质量与引力质量(引力荷)在牛顿力学中不应该有任何关系。然而通过当代最精密的试验也无法发现它们之间的区别,惯性质量与引力质量严格成比例(选择适当系数可使它们严格相等)。广义相对论将惯性质量与引力质量完全相等作为等效原理的内容。惯性质量联系着惯性力,引力质量与引力相联系。这样,非惯性系与引力之间也建立了联系。那么在引力场中的任意一点都可以引入一个很小的自由降落参考系。由于惯性质量与引力质量相等,在此参考系内既不受惯性力也不受引力,可以使用狭义相对论的一切理论。初始条件相同时,等质量不等电荷的质点在同一电场中有不同的轨道,但是所有质点在同一引力场中只有唯一的轨道。等效原理使爱因斯坦认识到,引力场很可能不是时空中的外来场,而是一种几何场,是时空本身的一种性质。由于物质的存在,原本平直的时空变成了弯曲的黎曼时空。在广义相对论建立之初,曾有第四条原理,惯性定律:不受力(除去引力,因为引力不是真正的力)的物体做惯性运动。在黎曼时空中,就是沿着测地线运动。测地线是直线的推广,是两点间最短(或最长)的线,是唯一的。比如,球面的测地线是过球心的平面与球面截得的大圆的弧。但广义相对论的场方程建立后,这一定律可由场方程导出,于是惯性定律变成了惯性定理。值得一提的是,伽利略曾认为匀速圆周运动才是惯性运动,匀速直线运动总会闭合为一个圆。这样提出是为了解释行星运动。他自然被牛顿力学批的体无完肤,然而相对论又将它复活了,行星做的的确是惯性运动,只是不是标准的匀速圆周而已。
  由此可见,并不是只有高维空间的生物才能发现低维空间的情况,聪明的蚂蚁一样可以发现球面的弯曲,并最终建立起完善的球面几何学,其认识深度并不比蜜蜂差多少。
  黎曼几何是一个庞大的几何公理体系,专门用于研究弯曲空间的各种性质。球面几何只是它极小的一个分支。它不仅可用于研究球面,椭圆面,双曲面等二维曲面,还可用于高维弯曲空间的研究。它是广义相对论最重要的数学工具。黎曼在建立黎曼几何时曾预言,真实的宇宙可能是弯曲的,物质的存在就是空间弯曲的原因。这实际上就是广义相对论的核心内容。只是当时黎曼没有像爱因斯坦那样丰富的物理学知识,因此无法建立广义相对论。
  就是说如果一种物质以超光速(300000000m/s 一般光速为每秒钟 30万千米)行驶的话,就可以实现穿越时空。等于光速时只能是在所在的时空静止了(相当于时空停止,时间不在流逝!),超过光速时可穿越时空!

7. 厉害了!爱因斯坦又一论证得到证实,时空真的会发生扭曲

爱因斯坦的扭曲空间观点得到证实
  
 为了确定惯性系拖拉,在这张由美国宇航局的 GRACE 卫星显示的地图上,研究人员采集了地球不均匀重力场的数据。 重力场的波动,归因于山脉、沟渠和看不见的地下密度差异。
  
 红色表示高重力; 蓝色区域的重力较低。
  
 一项新的研究证实了爱因斯坦广义相对论的一个关键预测:地球的自转扭曲了地球周围的空间。
  
 经过11年间对两颗绕地卫星的观测,研究人员发现,因为地球的自转导致太空结构发生扭曲,每颗卫星每年都因此被拖拽约 6 英尺(2 米),。
  
 本世纪公布的结果比同一小组在 1990 年代后期发表的初步调查结果要精确得多。
  
 这种作用力被称为惯性系拖拉。 这是对牛顿提出的引力理论的简单修正。根据爱因斯坦的相对论,奥地利物理学家约瑟夫·伦斯和汉斯·蒂林在 1918 年预测了性系拖拉动。(也称为伦斯-蒂林效应。)
  
 以下是它的工作原理:
  
 大学的研究负责人 Ignazio Ciufolini 解释说,任何有质量的物体都会扭曲它周围的时空,就像重物体会使拉伸的弹性片变形一样,意大利的迪莱切。
  
 如果物体旋转,则会引入另一种扭曲,“就像弹性薄片被旋转的重轮扭曲一样”。
  
 科学家们推断,如果地球周围的空间被惯性拖拉,那么卫星应该被卷入变形中。 想象一下弹性片材上的第二个物体将如何通过弹性片材变形时产生的揉搓运动而移动。
  
 Ciufolini 的团队分析了从两颗名为 LAGEOS 和 LAGEOS 2 的卫星上反射回来的数百万个激光信号。两者都是高反射球体,其设计目的不是为了自己做任何工作。 它们看起来像 2 英尺直径 (0.6m) 的高尔夫球,他们不含电池或电子设备。
  
 研究人员表示,他们的结果是预测阻力的 99%,最大误差在 10%。 详细信息将在 10 月 21 日出版的《自然》杂志上报道。
  
 科罗拉多大学博尔德分校的物理学家尼尔阿什比说,该分析是“第一次对惯性系拖拉进行合理准确的测量”。
  
 “对相对论引力理论预测的这些效应进行精确测量是至关重要的,因为它们对我们对宇宙的看法具有重要意义,”阿什比在该杂志的研究分析中写道。
  
 黑洞应用
  
 具体来说,新结果可以应用于黑洞理论。 事实上,正是黑洞通常比地球大得多,所以才发现了一些惯性系拖拉的最初迹象。
  
 在 1997 年对黑洞周围活动的观察中,研究人员指出,螺旋进入黑洞的气体会像陀螺一样摆动或旋转。 该结构的基础力学结构不能解释这样大的旋转。
  
 而早在 1996 年,Ciufolini 的团队在研究中就看到了地球轨道卫星存在惯性系拖拉的迹象,但由于缺乏对不对称地球重力场的认识,初步结果存在高度误差。 他说,由美国宇航局的新 GRACE 卫星生成的重力图为最新的分析提供了依据。
  
 与此同时,其他研究表明,黑洞确实在旋转,而惯性系拖拉是影响黑洞周围环境中喷出巨大的物质射流的一个重要原因。 Ciufolini 告诉 SPACE.com,整个天体结构可以比作一个巨大的陀螺仪。 其他观察结果显示,一股喷射流可以在数百万年间指向一个方向。
  
 “换句话说,”Ciufolini 解释道,“这个奇妙的陀螺仪有一把天体物理学的枪,这把枪在数百万年的时间里没有改变其射击方向。”
  
 周围的蓝色和白色环是围绕并朝向黑洞旋转的热气体,就像浴缸排水管附近的水一样。 绿色网格描绘了被右侧旋转的黑洞扭曲的时空坐标。
  
 相关知识
  
 黑洞是时空展现出极端强大的引力,以致于所有粒子、甚至光这样的电磁辐射都不能逃逸的区域。广义相对论预测,足够紧密的质量可以扭曲时空,形成黑洞;不可能从该区域逃离的边界称为事件视界。虽然,事件视界对穿越它的物体的命运和情况有巨大影响,但对该地区的观测似乎未能探测到任何特征。在许多方面,黑洞就像一个理想的黑体,它不反光。

厉害了!爱因斯坦又一论证得到证实,时空真的会发生扭曲

8. 爱因斯坦4个预言,1个已证实,剩下3个足以改变宇宙

爱因斯坦作为一个科学研究的巨匠,他的研究成果对世界的影响不仅仅是他活着的时候,在他死后的这百年以来,我们的许多科学研究依旧是建立在他所提出的理论基础上的,同样他生前曾经说过的话,也令人好奇不已。
  
 ​​​ 
  
 
  
  ​
  
 爱因斯坦生前曾经有过4个语言,如今距离他离开已经一个世纪左右了,其中一个预言已经得到了验证, 这个预言就是引力波的存在。我们知道地球宇宙中的许多星体之所以会悬浮着不坠落就是因为引力的作用,我们能够不掉出地球也是因为地球的引力。
  
 ​ 
  
 
  
  ​
  
 所谓的引力波就是物体之间的引力其实是相互作用的,他的这个预言虽然提出来已经很久了,但是以前由于我们的设备不完善,因此一直没有得到证实,去年当引力波终于被证实后,人们又开始重新看待爱因斯坦的其他预言,甚至大家认为如果爱因斯坦的其他预言被证实的话,将会改变世界。
  
 ​ 
  
 
  
  ​
  
 爱因斯坦其中一个没有被证实的预言实际上与大家常说的穿越有关,那就是所谓的虫洞。他认为在宇宙中存在一个专门进入的口叫做黑洞,又存在一个出去的口叫做白洞,而黑洞和白洞之间的区域就是所谓的虫洞,人能够通过虫洞到达其他的宇宙空间,目前黑洞已经被发现,科学家也在 探索 白洞的存在,如果虫洞真的存在,那么我们好奇的穿越也许就不再是空想了。
  
 ​ 
  
 
  
  ​
  
 人们认为爱因斯坦四个预言中能够影响世界的则是关于第四次大战。他曾预言人类会在第四次大战后进入原始状态。人类世界现在的主流一直和平与发展,因为大家已经在二战后感受到了战争对人类 社会 造成的伤害,所以并没有人希望战争发生。虽然爱因斯坦的预言中有的得到了证实,但是预言毕竟具有不可预测性,因此相信爱好和平的我们将一直处于和平之中。