金属氢化物,那么为什么镧镍合金还可以用作储氢材料

2024-05-15

1. 金属氢化物,那么为什么镧镍合金还可以用作储氢材料

因为镧镍合金可以与H2发生化学反应,用来吸收H2,生成金属氢化物;
改变条件(一般是加热或减压)后,金属氢化物又会重新分解成合金和H2。
纵观整个过程,镧镍合金就相当于是用来储氢用的。

金属氢化物,那么为什么镧镍合金还可以用作储氢材料

2. 储氢合金的概念是什么

一种新型合金,一定条件下能吸收氢气,一定条件能放出氢气:循环寿命性能优异,并可被用于大型电池,尤其是电动车辆、混合动力电动车辆、高功率应用等等。

20世纪60年代,材料王国里出现了能储存氢的金属和合金,统称为储氢合金(hydrogen storage metal),这些金属或合金具有很强的捕捉氢的能力,它可以在一定的温度和压力条件下,氢分子在合金(或金属)中先分解成单个的原子,而这些氢原子便“见缝插针”般地进入合金原子之间的缝隙中,并与合金进行化学反应生成金属氢化物(metal hydrides),外在表现为大量“吸收”氢气,同时放出大量热量。而当对这些金属氢化物进行加热时,它们又会发生分解反应,氢原子又能结合成氢分子释放出来,而且伴随有明显的吸热效应。

分类
目前储氢合金主要包括有钛系、锆系、铁系及稀土系储氢合金。

主要用途
氢气分离、回收和净化材料。

化学工业、石油精制以及冶金工业生产中,通常有大量的含氢尾气排出,含氢量有些达到50~60%,而目前多是采用排空或者白白的燃烧处理。因此,对这部分加以回收利用,在经济上有巨大的意义。另外,集成电路、半导体器件、电子材料和光纤等产业中,需要超高纯氢体。利用储氢合金对氢原子有特殊的亲和力,而对其他气体杂质择优排斥的特性,即利用储氢合金具有只选择吸收氢和捕获不纯杂质的功能,不但可以回收废气中的氢,而且可以使氢纯度高于 99.9999%以上,价格便宜、安全,具有十分重要的社会效益和经济意义。

制冷或采暖设备材料。

由于储氢合金具有在吸氢化学反应时放出大量热,而在放氢时吸收大量热的特性,因此,人们可以利用储氢合金的这种放热——吸热循环,可进行热的储存和传输,制造制冷或采暖设备。美国和日本竞相采用储氢合金制成太阳能和废热利用的冷暖房,其原理就是利用储氢合金在吸氢时的放热反应和释放氢时的吸热反应。我国北京有色金属研究总院则利用储氢合金储放氢过程的吸放热循环效应,制造了一台可以制冷到77K的制冷机,该机器可用于工业、医疗等行业需要低温环境的场合。

镍氢充电电池。

由于目前大量使用的镍镉电池(Ni-Cd)中的镉有毒,使废电池处理复杂,环境受到污染,因此它将逐渐被用储氢合金做成的镍氢充电电池(Ni-MH)所替代。从电池电量来讲,相同大小的镍氢充电电池电量比镍镉电池高约1.5~2倍,且无镉的污染,现已经广泛地用于移动通讯、笔记本计算机等各种小型便携式的电子设备。目前,更大容量的镍氢电池已经开始用于汽油/电动混合动力汽车上,利用镍氢电池可快速充放电过程,当汽车高速行驶时,发电机所发的电可储存在车载的镍氢电池中,当车低速行驶时,通常会比高速行驶状态消耗大量的汽油,因此为了节省汽油,此时可以利用车载的镍氢电池驱动电动机来代替内燃机工作,这样既保证了汽车正常行驶,又节省了大量的汽油,因此,混合动力车相对传统意义上的汽车具有更大的市场潜力,世界各国目前都在加紧这方面的研究。

3. 储氢合金的发展

20世纪60年代,材料王国里出现了能储存氢的金属和合金,统称为储氢合金(hydrogen storage metal),这些金属或合金具有很强的捕捉氢的能力,它可以在一定的温度和压力条件下,氢分子在合金(或金属)中先分解成单个的原子,而这些氢原子便“见缝插针”般地进入合金原子之间的缝隙中,并与合金进行化学反应生成金属氢化物(metal hydrides),外在表现为大量“吸收”氢气,同时放出大量热量。而当对这些金属氢化物进行加热时,它们又会发生分解反应,氢原子又能结合成氢分子释放出来,而且伴随有明显的吸热效应。20世纪70年代,LaNi5和Mg2Ni在荷兰Philips与美国Brookhaven实验室相继被发现具有可逆的吸放氢能力并伴随的一系列物理化学机理变化。1973年起,LaNi5开始被试图作为二次电池负极材料采用,但由于其循环性能较差,未能成功。1984年,荷兰Philips公司成功解决了LaNi5合金在循环中的容量衰减问题,为MH/Ni电池发展扫清了最后一个障碍。

储氢合金的发展

4. 储氢合金的主要用途:

 由于目前大量使用的镍镉电池(Ni-Cd)中的镉有毒,使废电池处理复杂,环境受到污染,因此它将逐渐被用储氢合金做成的镍氢充电电池(Ni-MH)所替代。从电池电量来讲,相同大小的镍氢充电电池电量比镍镉电池高约1.5~2倍,且无镉的污染,现已经广泛地用于移动通讯、笔记本计算机等各种小型便携式的电子设备。目前,更大容量的镍氢电池已经开始用于汽油/电动混合动力汽车上,利用镍氢电池可快速充放电过程,当汽车高速行驶时,发电机所发的电可储存在车载的镍氢电池中,当车低速行驶时,通常会比高速行驶状态消耗大量的汽油,因此为了节省汽油,此时可以利用车载的镍氢电池驱动电动机来代替内燃机工作,这样既保证了汽车正常行驶,又节省了大量的汽油,因此,混合动力车相对传统意义上的汽车具有更大的市场潜力,世界各国目前都在加紧这方面的研究。

5. 镍氢电池的储氢材料

镍氢电池作为当今迅速发展起来的一种高能绿色充电电池,凭借能量密度高、可快速充放电、循环寿命长以及无污染等优点在笔记本电脑、便携式摄像机、数码相机及电动自行车等领域得到了广泛应用。为了促进镍氢电池性能的提升,对负极储氢材料的研究从未间断。从狭义上讲,储氢材料是一种能与氢反应生成金属氢化物的物质;但是它与一般金属氢化物有明显的差异。即储氢材料必须具备高度的反应可逆性,而且,此可逆循环的次数必须足够多,循环次数超过5000次。实际上,它必须是能够在适当的温度、压力下大量可逆的吸收和释放氢的材料。  对于理想的金属储氢材料应具备以下条件:1、在不太高的温度下,储氢量大,释放氢量也大;2、原料来源广,价格便宜,容易制备;3、经多次吸、放氢,其性能不会衰减;4、有较平坦和较宽的平衡压力平台区,即大部分氢均可在一持续压力范围内放出;5、易活化,反应动力学性能好。  用于镍氢电池负极储氢材料的主要是金属(或合金)储氢材料,氢几乎可以同周期表中的各种元素反应,生成各种氢化物或氢化合物。但并不是所有金属氢化物都能做储氢材料,只有那些能在温和条件下大量可逆的吸收和释放氢的金属或合金氢化物才能做储氢材料用。  储氢合金材料在镍氢电池中有着重要地位,因此研究储氢材料对提高镍氢电池性能有着举足轻重的作用。

镍氢电池的储氢材料

6. 储氢合金的其他资料

某些金属具有很强的捕捉氢的能力,在一定的温度和压力条件下,这些金属能够大量“吸收”氢气,反应生成金属氢化物,同时放出热量。其后,将这些金属氢化物加热,它们又会分解,将储存在其中的氢释放出来。这些会“吸收”氢气的金属,称为储氢合金。储氢合金的储氢能力很强。单位体积储氢的密度,是相同温度、压力条件下气态氢的1000倍,也即相当于储存了1000个大气压的高压氢气。由于储氢合金都是固体,既不用储存高压氢气所需的大而笨重的钢瓶,又不需存放液态氢那样极低的温度条件,需要储氢时使合金与氢反应生成金属氢化物并放出热量,需要用氢时通过加热或减压使储存于其中的氢释放出来,如同蓄电池的充、放电,因此储氢合金不愧是一种极其简便易行的理想储氢方法。目前研究发展中的储氢合金,主要有钛系储氢合金、锆系储氢合金、铁系储氢合金及稀土系储氢合金。储氢合金不光有储氢的本领,而且还有将储氢过程中的化学能转换成机械能或热能的能量转换功能。储氢合金在吸氢时放热,在放氢时吸热,利用这种放热-吸热循环,可进行热的储存和传输,制造制冷或采暖设备。储氢合金还可以用于提纯和回收氢气,它可将氢气提纯到很高的纯度。例如,采用储氢合金,可以以很低的成本获得纯度高于99.9999%的超纯氢。储氢合金的飞速发展,给氢气的利用开辟了一条广阔的道路。储氢合金,当其用于电池,具有高放电(功率)性能和优异的放电性能,此外,裂化很少,循环寿命生能优异,并可被用于大型电池,尤其是电动车辆、混合动力电动车辆、高功率应用等等。该储氢合金具有伴随着储氢容量(H/M)变化的相变,并且当其储氢容量 (H/M)落入0.3~0.7或0.4~0.6范围内时,该储氢合金处于单一相或接近单一相的状态。

7. 对储氢合金材料有哪些要求

储能材料不仅能存储能量,并且能使能量转化,以供需用。最常见的储能材料有储氢合金和用于一次电池(即原电池,放电后不能复原使用)、二次电池(即蓄电池,放电后可重新充电复原反复使用)的材料。常见的一次电池有锌–二氧化锰电池、锌–氧化汞电池、锌–氧化银电池和锂电池等。常见的二次电池为铅–酸电池、镍–镉电池、镍–锌电池和镍–氢化合物电池、钠–硫电池、锂离子电池等。
   
 1、储氢合金
   
 氢是自然界中储量最大的元素,也是一种非常清洁的能源。储氢合金所存储的氢的密度比液态氢大得多(液氢的密度为4.2×1022大气压/厘米3,而LaNi5的氢密度为6.2×1022大气压/厘米3),并且释放氢时所需的能量很小。
   
 2、储氢合金应用要求
   
 储氢合金的工作压力很低,操作简单安全可靠。研发中的储氢合金体系有AB5型混合稀土合金、AB2型Laves相合金、AB型钛铁系合金、A2B型Mg–Ni系合金和钒基固溶体合金等。储氢合金与气体氢发生反应时生成金属氢化合物,大量的氢以固态形式储存于储氢合金中。储氢合金的吸氢与放氢,实际上就是金属氢化物的形成与分解。
   
 3、储氢合金的基本特征是:能可逆地大量吸氢和放氢,伴随着吸(放)氢过程出现放(吸)热效应,对氢能选择性地吸收,吸放氢的平衡压力随温度急剧变化。
   
 4、储氢合金可用于镍–氢化合物电池、氢的储存和净化、氢同位素分离、氢气回收、热泵、制冷等。

对储氢合金材料有哪些要求

8. 储氢合金是新型合金吗

储氢合金是一种新型合金,一定条件下能吸收氢气,一定条件能放出氢气:循环寿命性能优异,并可被用于大型电池,尤其是电动车辆、混合动力电动车辆、高功率应用等等。
目前储氢合金主要包括有钛系、锆系、铁系及稀土系储氢合金。