斐波那契数列 是什么

2024-05-15

1. 斐波那契数列 是什么

斐波纳契数列(Fibonacci Sequence),又称黄金分割数列。
斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……   
这个数列从第三项开始,每一项都等于前两项之和。

斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。

斐波那契数列 是什么

2. 斐波那契数列 怎么用

菲波那契数列指的是这样一个数列: 
1,1,2,3,5,8,13,21…… 
这个数列从第三项开始,每一项都等于前两项之和 
它的通项公式为:[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 【√5表示根号5】 
很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。 

该数列有很多奇妙的属性 
比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887…… 

还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1 
如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了菲波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到 

如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值

参考资料:http://zhidao.baidu.com/question/7868268.html

3. 斐波那契数列

斐波纳契数列(Fibonacci Sequence),又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1960年代起出版了《斐波纳契数列》季刊,专门刊载这方面的研究成果。

http://baike.baidu.com/view/816.html?wtp=tt

斐波那契数列

4. 斐波那契数列

斐波那契数列的通项公式是很眼花。。。不过重要的不是它的通项公式,是怎样解得它的通项公式
对于递推公式为ax(n+2)=bx(n+1)+cxn来说(这里的数列是x,n+2、n+1和n都是下标),令x(n+2)=
k^2,x(n+1)=k,x=1,解一元二次方程ak^2-bk-c=0,得到的k1和k2就是通项公式的重要组成部分,一般来说这种数列的通项公式是k1^(某个用n表示的数)+k2^(某个用n表示的数)
注:x^y是x的y次方 
到了高中就讲斐波那契数列了

5. 斐波那契数列

罗博深小学数学思维课《神奇数列》
链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ
?pwd=1234 
提取码:1234
资源目录:03 罗博深小学数学思维课《神奇数列》课时9:帕斯卡三角的神奇巧合.mp4课时8:Choose a team 选择一支队伍/排列组合与帕斯卡三角.mp4课时7:Pascal Triangle  初识帕斯卡三角.mp4课时6:1x1+1x1+2x2+3x3+5x5+8x8 斐波那契螺旋.mp4课时5:1+1+2+3+5+8+13+21+34+55 斐波那契数列之和.mp4课时4:斐波那契蜜蜂(从简单寻找规律).mp4课时3:5x5+8x8 连续斐波那契数的平方求和.mp4课时2:最美的分数(初识斐波那契数列).mp4课时1:课程介绍.mp4课时16:黄金比例长方形与斐波那契螺旋.mp4课时15:神奇的√5.mp4课时14:帕斯卡三角的倾斜数组和与斐波那契数.mp4课时13:帕斯卡三角斜线数组和与两种证明.mp4课时12:排列组合,斐波那契蜂巢与帕斯卡三角.mp4

斐波那契数列

6. 斐波那契数列有什么应用啊?

斐波那契数列的定义如下:
斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........这个数列从第3项开始,每一项都等于前两项之和。
比萨的列奥纳多,又称斐波那契(Leonardo Pisano ,Fibonacci, Leonardo Bigollo,1175年-1250年),中世纪意大利数学家,是西方第一个研究斐波那契数的人,并将现代书写数和乘数的位值表示法系统引入欧洲。其写于1202年的著作《计算之书》中包涵了许多希腊、埃及、阿拉伯、印度、甚至是中国数学相关内容。

7. 斐波那契数列是什么?

斐波那契数列的定义如下:
斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........这个数列从第3项开始,每一项都等于前两项之和。
比萨的列奥纳多,又称斐波那契(Leonardo Pisano ,Fibonacci, Leonardo Bigollo,1175年-1250年),中世纪意大利数学家,是西方第一个研究斐波那契数的人,并将现代书写数和乘数的位值表示法系统引入欧洲。其写于1202年的著作《计算之书》中包涵了许多希腊、埃及、阿拉伯、印度、甚至是中国数学相关内容。

斐波那契数列是什么?

8. 斐波那契数列是什么?

罗马风格的花椰菜螺旋类似斐波纳契序列。 斐波那契数列是数学中最著名的公式之一。
  数列中的每个数都是它前面两个数的和。顺序是:0,1,1,2,3,5,8,13,21,34等等。描述它的数学方程是Xn+2=Xn+1+Xn
  是高中和本科的主干课程,它被称为“自然的密码”和“自然的普遍法则”。据说它支配着吉萨大金字塔的所有东西的维度,对于你学校数学课本封面上的标志性贝壳,
  和几率是,几乎所有你知道的都是错的。
 分散的历史 那么,这个著名序列背后的真实故事是什么
   
  许多消息来源声称它是莱昂纳多·斐波纳契最先发现或“发明”的。这位出生于公元1170年左右的意大利数学家最初被称为比萨的列奥纳多,斯坦福大学的数学家基思·德夫林说。德夫林说,直到19世纪,历史学家才想出了“斐波那契”这个绰号(大致意思是“博纳契家族的儿子”),以将这位数学家与比萨的另一位著名的列奥纳多区分开。《发现斐波纳契:寻找改变世界的被遗忘的数学天才的探索》(普林斯顿大学出版社,2017年)一书的作者德夫林说:“定义宇宙的大量数据”
  ,但比萨的列奥纳多并没有真正发现这个序列。使用印度教 *** 数字系统的古代梵文文献首先提到了它,那些比比萨的列奥纳多早了几个世纪。
  “它一直存在,”德夫林告诉《生活科学》。
  然而,在1202年,比萨的列奥纳多出版了大量的书“Liber Abaci”,一本数学“如何计算的食谱”,德夫林Devlin说:“Liber Abaci”是为商人编写的,它列出了印度教- *** 语的算法,用于跟踪利润、损失、剩余贷款余额等。在书中的一个地方,
  中,比萨的Leonardo介绍了一个涉及兔子的问题。问题是:从一只雄性和一只雌性兔子开始。一个月后,它们成熟并与另一只雌雄兔产仔。一个月后,这些兔子繁殖出来-你猜的到-另一只雄性和雌性,也可以在一个月后交配。(忽略这里不太可能的生物学)一年后,你会有多少只兔子?结果,答案是144-,用来得到答案的公式就是现在所说的斐波那契数列。[最美的11个数学方程]
  
  “Liber Abaci”首次将这一序列引入西方世界。但是在关于兔子繁殖的几段简短的文字之后,比萨的列奥纳多再也没有提到这个序列。事实上,直到19世纪,数学家们对序列的数学性质有了更多的研究,这一问题才被人们遗忘。1877年,法国数学家埃杜阿尔·卢卡斯正式将兔子问题命名为“斐波那契数列”,德夫林说,
  
 斐波那契数列和黄金比率是雄辩的方程,但并不像看上去那么神奇。想象中的意思是 ,但斐波那契序列到底有什么意义?除了作为一个整洁的教学工具,它还出现在自然界的一些地方。然而,支配宇宙结构的并不是什么秘密代码,德夫林说,
  斐波那契序 *** 实与现在所知的黄金比率紧密相连(黄金比率甚至不是真正的比率,因为它是一个无理数)。简单地说,数列中的数字的比率,随着数列的无穷大,接近黄金比率,即1.618033987498948482。。。从那里,数学家可以计算出所谓的黄金螺旋,或是生长因子等于黄金比率的对数螺旋。[最多的9个德夫林说,存在大量的“KDSPE”“KDSPs”,黄金比例似乎捕捉到了一些植物生长的类型。例如,一些植物的叶子或花瓣的螺旋排列遵循黄金比例。松树呈现出一个金色的螺旋状,就像向日葵中的种子一样,根据“叶状:植物形态发生的系统研究”(剑桥大学出版社,1994)。但也有同样多的植物不遵循这一规则。
  “这不是生长事物的‘上帝的唯一规则’,让我们这么说吧,”德夫林说。
  也许是最著名的例子,被称为鹦鹉螺的海贝,实际上并没有按照斐波那契序列生长新的细胞,他说,
  当人们开始绘制与人体、艺术和建筑的连接时,与斐波那契序列的连接从稀薄到完全虚构。
  需要一本大书来记录所有关于黄金比例的错误信息,当时在缅因大学的数学家乔治·马科夫斯基(George Markowsky)在1992年发表在《大学数学杂志》上的一篇论文中写道:“这些错误信息中的许多都可以归因于1855年德国心理学家阿道夫·泽伊辛的一本书。Zeising声称人体的比例是基于黄金比例。黄金比例催生了“黄金矩形”、“黄金三角形”以及各种关于这些标志性维度出现在哪里的理论。从那时起,人们就说黄金比例可以在吉萨金字塔、帕特农神庙、达芬奇的“维特鲁维亚人”和一堆文艺复兴时期的建筑中找到。德夫林说,关于这个比率对人眼来说是“唯一令人满意”的最重要的说法是不加批判的。
  所有这些说法在测试时都是可测量的错误,
  我们是很好的模式识别器。“我们可以看到一个模式,无论它是否存在,”德夫林说这只是一厢情愿