光电效应与康普顿效应在对光子的粒子性认识方面有什么不同?

2024-05-13

1. 光电效应与康普顿效应在对光子的粒子性认识方面有什么不同?

第一位说法有错误。光电效应不是证明了光的波动性,而是证明了光的量子性!是爱因斯坦发展了普朗克的量子思想,提出了光量子学说,成功解释了光电效应的实验现象,才揭示了光的波粒二象性。光的波动性从光的干涉衍射现象以及光是电磁波就可以说明了。
光电效应和康普顿效应最大的不同是,光电效应中与光子作用的电子可以认为是束缚电子,光子与其碰撞需要克服束缚力作功;而康普顿散射中的电子可以认为是自由电子,可以认为电子和光子的碰撞过程是能量守恒和动量守恒的过程。

光电效应与康普顿效应在对光子的粒子性认识方面有什么不同?

2. 光电效应与康普顿效应在对光子的粒子性认识方面有什么不同

光电效应与康普顿效应有很大的不同.
光电效应是当光照在金属中时,金属里的自由电子由于变化的电场的作用而振动.若光振幅足够大,电子会飞出金属表面.于是金属就带了电.这个实验其实证明了光的波动性,即证明了光是一种电磁波.
而康普顿效应是让光波射入石墨,企图让石墨中的电子对光进行散射,然而散射光比入射光波长略大,由此康普顿研究出这是由于光子和电子碰撞时将一部分能量转移给电子.这样,光的能量减小,波长便增加.而且如果将光子当作实物粒子的话,计算结果与实验结果符合.这便证明了光子也具有动量.即证明了光的粒子性.
两个实验分别证明了光的波动性和粒子性,于是便有了后来的光的波粒二象性.

3. 电子对效应的康普顿散射与光电效应不同

康普顿散射与光电效应不同。光电效应中光子本身消失,能量完全转移给电子;康普顿散射中光子只是损失掉一部分能量。光电效应发生在束缚得最紧的内层电子上;康普顿散射则总是发生在束缚得最松的外层电子上。分析一下散射光子和反冲电子的能量与散射角的关系。入射光子能量为Er=hv,,动量为hv/c,碰撞后,散射光子的能量为Er=hv’,动量为hv’/c,反冲电子的动能为Ee,总能量为E,动量为P。从(2.2.8)、(2.2.9)和(2.2.10)式可以看出:⒈当散射角θ=0°时,散射光子能量Er=Er’,达到最大值.这时反冲电子的能量Ee=0.这就是说,在这种情况下入射光子从电子近旁掠过,未受到散射,所以光子能量没有损失。⒉当θ=180°时,入射光子与电子对心碰撞后,沿相反方向散射出来,而反冲电子沿着入射光子方向飞出,这种情况称反散射。这时散射光子能量最小,即Er’min=Er/(1+2Er/m0c2)此式可以推断出,即使入射光子的能量变化很大,反散射光子的能量都在200KeV左右。这也是能谱上容易辨认反散射峰的一个原因。发生康普顿效应时,散射光子可以向各个方向散射。对于不同方向的散射光子,其对应的反冲电子能量也不同。因而即使入射γ光子的能量是单一的,反冲电子的能量却是随散射角连续变化的。理论计算和实验都表明入射光子的康普顿反冲电子能谱。电子对效应是γ光子从原子核旁经过时,在原子核的库仑场作用下,γ光子转化为一个正电子和一个负电子的过程。根据能量守恒定律,只有当入射光子能量hv大于2m0c2,即hv>1.02MeV时,才能发生电子对效应。

电子对效应的康普顿散射与光电效应不同

4. 康普顿效应是如何证明光的粒子性

ab、光电效应现象说明光的能量是一份一份的,随后的康普顿效应说明光子除了能量之外还有动量,这两个现象都说明光具有粒子性,故ab正确.
c、衍射是波动性的特征,光的衍射只能说明光具有波动性,故c错误.
d、发现α粒子散射实验中少数α粒子发生了较大偏转是卢瑟福猜想原子核式结构模型的主要依据,与光的粒子性无关,故d错误.
故选:ab.

5. 康普顿效应证实了光的什么性?

康普顿效应证实了光的粒子性。
康普顿效应说明光子具有粒子性,而且光子不但具有能量,还有动量。康普顿效应的发现,以及理论分析和实验结果的一致,不仅有力地证实了光子假说的正确性,并且证实了微观粒子的相互作用过程中,也严格遵守能量守恒和动量守恒定律。

康普顿效应的意义
(1)证明了爱因斯坦光子说的正确性。
(2)揭示了光子不仅具有能量,还具有动量。
(3)揭示了光具有粒子性的一面。
(4)证实了在微观粒子的单个碰撞事件中动量守恒定律和能量守恒定律仍然成立。

康普顿效应证实了光的什么性?

6. 康普顿效应证实了光的什么性

A、康普顿效应进一步证实了光的粒子特性,故A错误;
  B、普朗克提出电磁辐射的能量的量子化,能解释黑体辐射规律,故B正确;
  C、经典物理学不能解释原子的稳定性和原子光谱的分立特征,从而提出玻尔的原子模型,故C正确;
  D、天然放射性元素的半衰期与环境的温度无关,故D错误;
  故选:BC.

7. 光电效应与康普顿效应的区别与联系

1)
康普顿效应可以发生在光子与自由电子或者发生于光子与束缚电子之间。而与自由电子发生康普顿效应的几率更大。
光电效应只能发生在光子与束缚电子之间,而不能发生与光子与自由电子之间。(关于这一点的证明为反证法:能量守恒方程、动量守恒方程,共2个方程,而未知数却只有1个,即效应发生后光电子的速度。而在束缚电子情况下,除光子、电子外,还有第三者的参与,即原子核)
2)
光电效应中,光子把自身能量的全部转移给电子,光子本身消失。
康普顿效应中,光子把自身能量的一部分转移给电子,光子本身不消失,而是保留了部分能量,成为散射光子。
----------------
这是它们之间最主要的区别。还有一些细致区别,例如
发生几率
对光子能量以及靶物质性质的依赖关系。
PS:无论哪种效应,都证明了光的粒子性。(光的波动性是很早就认识到的,根据衍射、折射、反射、偏振等现象)

光电效应与康普顿效应的区别与联系

8. 康普顿效应证实了光的什么性?

康普顿效应说明光的粒子性。康普顿效应中,当某种频率的X射线被静止的自由电子散射出来,散射X射线的频率不是不变的,而是按照一定的方式随散射角的增加而减小。
把X射线当做能量为HW,动量为hw/c的相对论粒子,把能量和动量守恒定律应用于这个碰撞,就能准确描述这个效应。
这个效应说明了粒子性,也说明了能量守恒和动量守恒适用于任何地方,无论是相对论,还是量子力学,还是经典力学。

康普顿效应介绍
康普顿效应也称散射效应或康普顿散射(compton scatterring)。当一个光子击脱原子外层轨道上的电子时,入射光子就被偏转以新的方向散射出去。光子的能量一部分作为反跳电子的动能,而绝大部分是作为光子散射。
一个光子被偏转以后,能保留多大能量,由它的原始能量和偏转的角度来决定。偏转的角度愈大,能量的损失就愈多。散射光子的方向是任意的,光子的能量愈大,它的偏转角度就愈小。但是低能量的光子,在散射效应中,向后散射的多。
在X线摄影用(40~150kV)能量范围内,散射光子仍保留大部分能量,只有很少的能量传给电子。
在X线摄影中所遇到的散射线,几乎都是来自这种散射。因为散射吸收是光子和物质相互作用中的主要形式之一,所以在实际工作中我们无法避免散射线的产生,而只能设法消除或减少它的影响。